Bearing Fault Classification Using Ensemble Empirical Mode Decomposition and Convolutional Neural Network
نویسندگان
چکیده
منابع مشابه
Improved Ensemble Empirical Mode Decomposition for Rolling Bearing Fault Diagnosis
Rolling bearing is an important part in mechanical system and faults occur frequently with vibration noise. Empirical mode decomposition (EMD) is a tool for nonlinear and non-stationary signals analysis. However, the major drawbacks of EMD are mode mixing problem, ensemble empirical mode decomposition (EEMD) provides a new tool for signal analysis, and it is an improved technique of EMD. In ord...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملAutomatic Fault Classification of Rolling Element Bearing using Wavelet Packet Decomposition and Artificial Neural Network
In this work an automatic fault classification system is developed for bearing fault classification of three phase induction motor. The system uses the wavelet packet decomposition using ‘db8’ mother wavelet function for feature extraction from the vibration signal, recorded for various bearing fault conditions. The selection of best node of wavelet packet tree is performed by using best tree a...
متن کاملConvolutional Neural Net and Bearing Fault Analysis
There has been immense success on the application of Convolutional Neural Nets (CNN) to image and acoustic data analysis. In this paper, rather than preprocessing vibration signals to denoise or extract features, we investigate the usage of CNNs on raw signals; in particular, we test the accuracy of CNNs as classifiers on bearing fault data, by varying the configurations of the CNN from one-lay...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2021
ISSN: 2079-9292
DOI: 10.3390/electronics10111248